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Motivation to study EM corrections to K → ππ
This morning’s session is about the studies of K → ππ decay and ε′

Progresses reported by R. Mawhinney, T. Wang, C. Kelly, F. Romero-Lopez

Direct CP violation in K → ππ

ε′ = 1

3
(η+− − η00) =

ie i(δ2−δ0)

√
2

ReA2

ReA0
( ImA2

ReA2
− ImA0

ReA0
)

Turn on EM interaction, AI → AγI , δI → δγI , I = 0,2

Though Aγ2 −A2 is an O(αe) effect, its size could be enhanced by a factor of 22
due to the mixing with A0 and ∆I = 1/2 rule

ChPT+Large-Nc : Cirigliano et al, hep-ph/0008290, hep-ph/0310351

–“the isospin violating correction for ε′ is below 15%”
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Technical issues on including electromagnetism

Lellouch-Lüscher’s formalism relies on a short-range interaction
⇒ long-range EM requires the change in the FV formalism

Main topic of this talk

EM interaction mixes I = 0 and I = 2 ππ scattering
⇒ K → ππ decay becomes a coupled-channel problem

See Lat17 proceeding: EPJ Web Conf. 175 (2018) 13016

Possible photon radiation
⇒ coupled channels further mixed with 3-particle channel (ππγ)

Under investigation
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Strategy to include electromagnetism

Include EM interaction in the Coulomb gauge

Lint = ∑
q=u,d,s

eqA⃗(x) ⋅ q̄γ⃗q(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Transverse radiation

− ∑
q,q′=u,d,s

∫
d3x⃗ ′

4π

ρq(x⃗ ′, t)ρq′(x⃗ , t)
∣x⃗ ′ − x⃗ ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Coulomb potential

Adding transverse photon to ππ ⇒ three-particle problem

At current stage, focus on Coulomb potential only

Photon propagator in the Coulomb gauge

G00(p) =
1

p⃗2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V (r)= 1

4πr

, Gij(p) =
1

p2
(δij −

pipj

p⃗2
) , Gi0(p) = G0i(p) = 0
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Coulomb potential in the finite volume

Encode long-range EM interaction in the finite box – QEDL
[helpful discussion with Luchang Jin]

Coulomb potential in periodic box VL(r) = ∑n V (r + nL)

▸ ∀n, V (r + nL) has impact on r ≈ 0 region and ∑n causes divergence

Modify VL(r) → V̂L(r) = VL(r) − 1
L3 ∫ d3rV (r) to remove the divergence

▸ This is equivalent to remove zero mode: V̂L(r) = 4παe

L3 ∑p≠0
e ip⋅r

p2

However, V̂L introduces O(1/L) FV effects

δV (r) ≡ V̂L(r) −V (r) =
⎛
⎝

1

L3 ∑
p≠0

−∫
d3p

(2π)3
⎞
⎠

4παe

p2
e ip⋅r, lim

r→0
δV (r) = −καe

L
≈ −2.8

αe

L

Similar situation happens for massive photon and C∗ boundary condition
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Adopt Lüscher’s method

In the peridoic ”exterior region” where strong interaction vanishes

Without QED

▸ ψ(r) can be constructed by partial wave scattering amplitude

ψ(r) = ∑
`m

b`mY`m(Ωr) {cos δ` j`(kr) + sin δ` n`(kr)}

where j`(kr), n`(kr) are regular and irregular Bessel function
▸ ψ(r) is related to singular periodic solution of Helmholtz Eq.

ψ(r) = ∑
`m

v`mG
(0)
`m (r, k

2)

▸ This leads to quantization condition φ(k) + δ(k) = nπ

With QED
▸ j`, n` → F`, G`

ψC(r) = ∑
`m

b`mY`m(Ωr) {cos δ` F`(kr) + sin δ`G`(kr)} +O(αe

L
)

However, VL(r) is not of type 1
r

→ O(αe

L
) effect

▸ Solution of (Coulomb) Helmholtz Eq. can be perturbatively expanded

ψC(r) = ∑
`m

v`mGC ,`m(r, k2), GC ,`m = G
(0)
`m +G

(1)
`m +O(α2

e) 8 / 16



Lüscher’s quantization condition

Wave function can be written in two forms

ψC(r) = ∑
`m

b`mY`m(Ωr) {cos δ` F`(kr) + sin δ`G`(kr)} +O(αe

L
)

ψC(r) = ∑
`m

v`mGC ,`m(r, k2), GC ,`m = G
(0)
`m +G

(1)
`m +O(α2

e)

Equating two expressions yields quantization condition φc(k) + δ(k) = nπ

cotφc(k) = (1 + πη)
1

π

1

kL
∑
n

1

−n2 + ( kL
2π
)2

+ lim
r→0

8πη {∑
n≠m

e in⋅r
2π
L

π(2π)4
1

n2 − ( kL
2π
)2

1

(n −m)2
1

m2 − ( kL
2π
)2
− 1

4π
ln(1/kr) + 1

4π
}

with η = αeµ
k

the Sommerfeld parameter

(See also formula for scattering length [Bean & Savage, 1407.4846])
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Kim, Sachrajda and Sharpe’s method

Finite volume effects arise from 2-particle propagators

⎛
⎝∫

dp0

2π

1

L3 ∑
p⃗

−∫
d4p

(2π)4
⎞
⎠
f (p) 1

p2 −m2 + iε

1

(P − p)2 −m2 + iε
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S2(P,p)

g(p)

Integrating p0 leaves two terms

1

2ωp((E − ωp)2 − ω2
p)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
power-law FV effects

,
1

2ωp((E + ωp)2 − ω2
p)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
exponential FV effects

, with ωp =
√
m2 + p⃗2

⇓ ⇓
on-shell amplitude off-shell quantity

Include photon exchange
~p1 ~p2

~q (~q = ~p1 − ~p2)

⎛
⎝∫

dp10

2π ∫
dp20

2π
∑

p⃗1≠p⃗2

−∫
d4p1

(2π)4 ∫
d4p2

(2π)4
⎞
⎠
f (p1)S2(P,p1)

1

q⃗2
S2(P,p2)g(p2)

q⃗ = p⃗1 − p⃗2 ≠ 0⃗ ⇒ Off-shell quantity also contributes O(1/Ln) FV effects
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Coulomb potential with truncated range RT ≤ L/2

Truncate the Coulomb potential with a range RT

V (T)(r) = {
αe/r , for r < RT

0, for r > RT

Build periodic potential

V
(T)
L (r) = ∑

n

V (T)(r + nL)

Lüscher’s quantization condition holds for Vs(r) +V (T)(r)

φ(q) + δT (k) = nπ, q = kL

2π

So does Lellouch-Lüscher formula

Both Lüscher’s method in potential theory and KSS method in QFT work well

Remaining issue is to relate truncated δT and AT to the physical ones
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Truncation effects in scattering amplitude

Vs + V (C) =

Vs + V (T )

+

∆V

ST

= + + · · ·

SC − ST =

∆V

+ O(α2
e)

The relation for scattering amplitude

SC = ST − i 2πδ(E − E ′) ⟨E ,−,T ∣∆V ∣E ,+,T ⟩

∆V (r) is non-zero only for r > RT

For ψ
(±)

T (r) = ⟨r ∣E ,±,T ⟩, the functional form is known for r > RT

ψ
(±)

T (r) =
√

µ

πk

sin(kr + δT )
r

e±iδT , for S-wave

Correction to scattering amplitude can be evaluated

⟨E ,−,T ∣∆V ∣E ,+,T ⟩ = ∫
R∞

RT

d3rψ(−)∗T (r)αe

r
ψ
(+)

T (r) 12 / 16



Truncation effects in decay amplitude

σ → ππ decay amplitude

AT

=

σ

+ + · · ·

σAC − AT =

∆V

+ O(α2
e)

Truncation effects can be determined

AC −AT = ∫
R∞

RT

d3rψ(−)∗T (r)αe

r
ψ0(r)AT

ψ0 is the free wave function: ψ0(r) = − 1
2

√
µ
πk

e ikr

r
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Examine in the quantum field theory

For scattering amplitude
∆V

∫
d4p1

(2π)4 ∫
d4p2

(2π)4 f (p1)S2(P,p1)∆V (q⃗)S2(P,p2)g(p2), q⃗ = p⃗1 − p⃗2

∆V (q⃗) can be written as

∆V (q⃗) = ∫
r>RT

d3r⃗
αe

r
e−i q⃗⋅r⃗

Integrating over p10 leaves two terms

∫
d3p⃗1

(2π)3 f (p1)
e−i p⃗1⋅r⃗

2ωp((E − ωp)2 − ω2
p)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
on-shell scattering wave function

, ∫
d3p⃗1

(2π)3 f (p1)
e−i p⃗1⋅r⃗

2ωp((E + ωp)2 − ω2
p)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
suppressed by e−ΛQCDRT

For decay amplitude
∆V

on-shell ψ
(−)∗

T e ikr ×AT

One obtains the same structure in QFT as that in potential theory 14 / 16



When photon crosses the bubble

Check the singularity for the on-shell amplitude

→

(q0, ~q)

(E
2
, ~k) (E

2
, ~k′)

(E
2
)2 = ~k2 +m2 = ~k′2 +m2

∫
dq0

2π ∫
d3q⃗

(2π)3
1

(E
2
− q0)

2 − (k⃗ − q⃗)2 −m2 + iε

1

(E
2
− q0)

2 − (k⃗ ′ − q⃗)2 −m2 + iε

1

q⃗2

Integrate over q0

∫
d3q⃗

(2π)3
1

(k⃗ − q⃗)2 − (k⃗ ′ − q⃗)2
1

q⃗2
+ ∫

d3q⃗

(2π)3
1

(k⃗ ′ − q⃗)2 − (k⃗ − q⃗)2
1

q⃗2

Two residues cancels ⇒ No worry about truncation effects here

Situation changes when the transverse radiation part is included: 1
q⃗2 →

1
q2
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Conclusion

It can be foreseen that ε′ will reach the precision of O(10%)

Important to include the EM corrections, as enhanced by ∆I = 1/2 rule

To determine the EM correction, we try to solve three problems

▸ Encode EM into Lüscher and Lellouch-Lüscher formalism
⇒ Introduce truncated Coulomb potential

▸ Solve the issue for the mixing between I = 0 and 2 channel
⇒ Coupled channel problem simplified due to αe-expansion

▸ Remaining issue: Include the transverse radiation

Pave the way for the realistic calculation of EM corrections K → ππ
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Backup slides
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Truncation effects in decay amplitude

σ → ππ decay amplitude

AT

=

σ

+ + · · ·

σAC − AT =

∆V

+ O(α2
e)

The relation for decay amplitude

AC −AT = ⟨E ,−,T ∣∆V G
(+)

TS ∣σ⟩ = ⟨E ,−,T ∣∆V G
(+)

0 (1 +VTSG
(+)

TS ) ∣σ⟩

∆V is non-zero at r > RT ; VTS = Vs +V (T) is non-zero at r < RT

The free Green function ⟨r∣G (+)0 ∣r′⟩ for r > RT and r ′ < RT is given by

⟨r∣G (+)0 ∣r′⟩ = ∫
dE ′

2π
⟨r∣E ′⟩ 1

E − E ′ + iε
⟨E ′∣r′⟩ r>r ′ÐÐ→ −1

2

√
µ

πk

e ikr

r
⟨E ∣r′⟩

Truncation effects can be determined

AC −AT = ∫ d3rψ(−)∗T (r)α
r
(−1

2

√
µ

πk

e ikr

r
)AT
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Mixing of isospin states

Focus on Coulomb potential, no ππγ state
However, I = 2 and I = 0 ππ states still mix with each other

No EM: relation between charged c = +−,00 and isopsin s = 0,2 ππ states

∣(ππ)c⟩out = ∑
s=0,2

Ωcs ∣(ππ)s⟩out, Ωcs = (
√

2/
√

3 1/
√

3

−1/
√

3
√

2/
√

3
) = ( cos θ sin θ

− sin θ cos θ
)

With EM:

∣(ππ)γc ⟩out = ∑
s=0,2

Ωγ
cs ∣(ππ)γs ⟩out, Ωγ

cs = (
cos θγ sin θγ

− sin θγ cos θγ
)

Define out
⟨(ππ)γs ∣HW ∣K 0

⟩ = e iδγ
s Aγ

s

ε′ = 1

3
(η+− − η00) =

sin 2θ

sin 2θγ
ie i(δ

γ
2 −δ

γ
0 )

√
2

ReAγ2
ReAγ0

( ImAγ2
ReAγ2

− ImAγ0
ReAγ0

)

sin 2θ
sin 2θγ

is a small correction ⇒ focus on Aγs and δγs
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Determination of Aγ
s and δγs from lattice QCD

Turn off EM and calculate correlators with I = 0,2 operators

CII ′(t) = ⟨φππ,I (t)φ†
ππ,I ′(0)⟩

= ∑
s=0,2

⟨0∣φππ,I ∣(ππ)s⟩e−Es t⟨(ππ)s ∣φ†
ππ,I ′ ∣0⟩δs,I δs,I ′

= (UMU†)II ′
where

U = (⟨0∣φππ,0∣(ππ)0⟩ 0
0 ⟨0∣φππ,2∣(ππ)2⟩

) , M = (e
−E0t

e−E2t)

Turn on EM and calculate correlators with the same operators

CγII ′(t) = ⟨φππ,I (t)φ†
ππ,I ′(0)⟩

γ

= ∑
s=0,2

γ⟨0∣φππ,I ∣(ππ)γs ⟩e−E
γ
s t⟨(ππ)γs ∣φ†

ππ,I ′ ∣0⟩
γ

= (UγMγUγ†)II ′
where

Uγ = (
γ⟨0∣φππ,0∣(ππ)γ0 ⟩ γ⟨0∣φππ,0∣(ππ)γ2 ⟩
γ⟨0∣φππ,2∣(ππ)γ0 ⟩ γ⟨0∣φππ,2∣(ππ)2⟩

) , Mγ = (e
−Eγ

0 t

e−E
γ
2 t)
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Determination of Aγ
s and δγs from lattice QCD

Use the coefficient matrix to construct a ratio U−1Uγ = 1 + (N
(1)
00 N

(1)
02

N
(1)
20 N

(1)
22

)

Build a ratio for the 2 × 2 correlation matrix: R(t) = C− 1
2 (t)Cγ(t)C− 1

2 (t)

Time dependence of R(t) yields

R(t) = ( 1 + 2N
(1)
00 + E

(1)
0 t N

(1)
20 e(E2−E0)t/2 +N

(1)
02 e(E0−E2)t/2

N
(1)
20 e(E2−E0)t/2 +N

(1)
02 e(E0−E2)t/2 1 + 2N

(1)
22 + E

(1)
2 t

)

▸ E
(1)
s = Eγs − Es can be used to determine δγs , s = 0,2

▸ N
(1)
II ′ can be used to construct Uγ and compute Aγs = ⟨(ππ)γs ∣HW ∣K 0⟩

Need to modify Lüscher quantization condition and Lellouch-Lüscher relation to
include EM effects
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